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Abstract
We present a revised geometric measure of entanglement (RGME) which is
just certain generalization of geometric measure of entanglement (GME). The
revised version is an entanglement monotone. Some useful inequalities about
RGME are deduced. For example, we give the formulae of RGME for the two-
parameter class of states in a 2 ⊗ n quantum system, the two particles’ high
dimensional maximally entangled mixed state, the isotropic state including the
n-particle d-level case and two multipartite bound entangled states. The results
show there is a relation Ẽsin2 � Ere, and then RGME is an appropriate measure
of entanglement.

PACS numbers: 03.67.Mn, 03.65.Ta

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Entanglement, first noted by Einstein–Podolsky–Rosen (EPR) [1] and Schrödinger [2], is an
essential feature of quantum mechanics. To date, the entangled states have become a very
useful and important resource in quantum computation and quantum communication. As a
result, the task of quantifying entanglement has emerged as one conspicuous theme in quantum
information theory (QIT). As far as our knowledge, the quantification of entanglement is well
understood for bipartite pure states; in a more complex scenario (multipartite systems or mixed
states), a complete theory on the characterization and quantification of entanglement presents
even great challenge.

Broadly speaking, there are two main approaches taken to the definition of entanglement
measures. First is an operational approach [3], in which the measures of entanglement are
related to physical tasks that one can perform with a quantum state, as quantum communication,
and their representations are the entanglement of formation (EOF) [3–7], the entanglement
cost [8, 9], the distillable entanglement [10] and the singlet fraction [11, 12]. The other is an
axiomatic approach [13–15], which starts from desirable axioms that a ‘good’ entanglement
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measure should satisfy, and then attempts to construct such measures, for example, the RE
[13, 14], the negativity [16, 17] and the robustness of entanglement [15, 18] belong to axiomatic
measures. Recently, the geometric measure of entanglement (GME) based on the geometry
of Hilbert has been proposed [19–23]. Actually, the merit of GME is that it is suitable for
any-partite systems with any dimension, although determining it analytically for generic state
remains a challenge. However, the closest separable state of GME has a concrete pure state
form, while we know most of closest separable states are mixed state, thus it needs somewhat
generalization. It deserves addressing that GME has no gentle passage from pure state form
to mixed state form. Thus, it is necessary to seek the unification of pure state and mixed state
forms and arrive at gratifying requirement. Here, we present an attempt to face this challenge
by developing GME.

We are always interested in the investigations of entanglement measure of high
dimensional and/or multipartite systems. One of us had ever tried to suggest a generalization
of the EOF [24] and a modification of the RE [25]. In this paper, we will propose one way
to generalize the GME and make it admit this generalization, that is, the so-called revised
GME (RGME). Through the RGME, we quantify the entanglement of two-parameter class of
states in 2 ⊗ n quantum system, two particles’ high dimensional maximally entangled mixed
state, isotropic state including n-particle d-level case and two multipartite bound entangled
states. Furthermore, we obtain an important bound relation for these states. Our results indeed
demonstrate that the RGME is an appropriate measure of entanglement.

The paper is organized as follows: in section 2, we review the GME. In section 3, we
introduce one generalization called RGME and investigate its properties in detail. Then, we
calculate GME, RGME and other entanglement measures through some special classes of
quantum states in section 4. In section 5, we summarize some concluding remarks.

2. Geometric measure of entanglement

Exploring a geometric approach to quantify measure of entanglement is first introduced by
Shimony [26] in the setting of bipartite pure states, and then generalized to the multipartite
setting (via projection operations of various ranks) by Barnum and Linden [27]. Wei and
Goldbart further provide the GME on the basis of their works [19–23]. The GME for pure
state |ψ〉 is defined as

Esin2 = 1 − �2
max = 1 − max

separable{φ}
‖〈φ|ψ〉‖2, (1)

where |φ〉 is a general n-partite pure state with the form (expanded in the local bases |e(i)
pi

〉)

|φ〉 = ⊗n
i=1|φ(i)〉 =

∑
p1p2···pn

χp1p2···pn

∣∣e(1)
p1

e(2)
p2

· · · e(n)
pn

〉
. (2)

In basis independent form, we have〈
ψ
(⊗n

j (�=i)

)∣∣φ(j)
〉) = �〈φ(i)|, (⊗n

j (�=i)

〈
φ(j)

)∣∣ψ 〉 = �|φ(i)〉, (3)

which are independent of the choice of the local basis. The physical meaning of the GME
can be seen from entanglement eigenvalue �max which is the cosine of angle between the
pure state and its closest separable state. Of course, the stronger the entanglement of state
becomes, the farer its closest separable state will be, and the larger will be the angle between
them. We remark that determining the entanglement of |ψ〉 is equivalent to finding the Hartree
approximation to the ground state of the auxiliary Hamiltonian H = −|ψ〉〈ψ | [20]. The
extension to mixed state can be made via the use of the convex roof (or hull) construction as
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done for EOF. The essence of the problem is a minimization over all decompositions into pure
states, i.e.,

ρ =
∑

i

pi |ψi〉〈ψi |,

E(ρ) = (coEpure)(ρ) = min
{pi ,ψi }

∑
i

piEpure(|ψi〉).
(4)

So, for the general mixed state, it is difficult to write the clear analytical expression of the
GME. It is worth indicating that arbitrary two-qubit mixed state, its GME, has been given [23]
by

Esin2 = 1
2 (1 −

√
1 − C(ρ)2), (5)

where C(ρ) is concurrence of an arbitrary two-qubit mixed state defined as follows:

C(ρ) = max{0,
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4} (6)

and λ1 � λ2 � λ3 � λ4 are the square roots of eigenvalues of the product ρABρ̃AB ,

ρ̃AB = (σy ⊗ σy)ρ
∗
AB(σy ⊗ σy). (7)

For the sake of clarifying, we use the GME to calculate some simple two-qubit states.
Example 1.

ρ1 = λ|�†〉〈�†| + (1 − λ)|01〉〈01|, (8)

where |�†〉 = 1√
2
(|00〉 + |11〉),

Esin2 = 1
2 (1 −

√
1 − C(ρ)2) = 1

2 (1 −
√

1 − |λ|2). (9)

Example 2.

ρ2 = A|01〉〈01| + (1 − A)|10〉〈10| +
G

2
(|01〉〈10| + |10〉〈01|), (10)

where G satisfies G � 2
√

A(1 − A). This condition ensures the state ρ2 is semi-definite.
Negativity and concurrence of this class of states are equal, i.e. N(ρ2) = C(ρ2) = G. It is
easy to calculate the GME,

Esin2 = 1 − √
1 − G2

2
. (11)

Based on the requirement of calculating GME of pure state, its closest separable pure state
|φ〉 is given, i.e. equation (2). However, generally speaking, even in the case of pure states,
most of its closest separable states are mixed states, this standpoint has been presented in many
references [13, 14]. Only some special states, their closest separable states can be pure states,
such as examples in [13, 20, 22]. Thus, it is necessary to break the limitation and generalize the
original definition and give satisfaction sufficient to meet needed demand or requirement. In
addition, as far as a mixed state is concerned, the convex structure is complicated to compute
because it adds the amount of calculation and the magnitude of difficulty. Above definition,
equation (4), is a common method to deal with scenario of mixed state. Whether there is a
different method which can solve this problem to make it compute easily, at the same time,
has gentle passage from pure state form to mixed state form. The answer is affirmative. The
main purpose of this paper is to propose certain generalization of GME to avoid facing this
embarrassment and make it satisfactory.
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3. Revised geometric measure of entanglement

The motivation for constructing the GME is to address the degree of entanglement from
a geometric viewpoint, regardless of the number of parties. Yet, there is some room to
generalize in the original definition of GME. In this section, we propose the revised GME
(RGME) which is just a generalization to make it perfect and we elucidate the revision by
some concrete examples.

3.1. Definition

We begin with the revision of GME, which is defined as

Ẽsin2(ρ) = min
σ∈S

(1 − F 2(ρ, σ )), (12)

where

F(ρ, σ ) = tr
√

ρ
1
2 σρ

1
2 , (13)

where S denotes the set of separable states. Comparing equation (12) with equation (1), we
obtain the relation

�2
max = max

σ∈S
F 2 (ρ, σ ) . (14)

Remark when density matrices ρ, σ represent pure states, fidelity equals to overlap, above
formula can reduce to the definition of the GME, i.e., equation (1). The maximum of overlap
is totally different from the maximal fidelity in the sense that the latter’s variational range
is wider than the form’s case, thus our revised GME is more appropriate. The essence of
proposed RGME is to calculate the fidelity between given state and its closest separable state.
Finally, it reduces to the search of the closest separable state.

Because of the relation between Bures metric and fidelity, and the fact that Bures metric
is positive, we have

Bures(ρ) =
√

1 − F 2(ρ, σ ), (15)

then the RGME can be expressed as

Ẽsin2(ρ) = min
σ∈S

(Bures2(ρ)). (16)

Let us see whether the RGME Ẽsin2 is a good entanglement measure or not? We know a
good entanglement measure should satisfy some properties [28, 29]. It is easy to prove that
the RGME indeed satisfies these requirements.

Now, we verify that it is non-increasing under local operation and classical communication
(LOCC) transformation using the Uhlmann’ theorem [30]. Proof: assume ε is a trace-
preserving quantum operation, ρ, σ are density operators. Let |ψ〉, |ϕ〉 be purifications of
ρ, σ in a joint system RQ such that F(ρ, σ ) = 〈ψ |ϕ〉. Introduce a model environment E
for the quantum operation ε which starts in a pure state |0〉 and interacts with the quantum
system Q via a unitary interaction U. Note U |ψ〉|0〉 is a purification of ε(ρ) and U |ϕ〉|0〉 is a
purification of ε(σ ). By Uhlmann’s theorem, we have

F(ε(ρ), ε(σ )) � |〈ψ |〈0|UU †|ϕ〉|0〉| = |〈ψ |ϕ〉| = F(ρ, σ )

1 − F(ε(ρ), ε(σ )) � 1 − F(ρ, σ )

Ẽsin2(ε(ρ)) � Ẽsin2(ρ).

(17)

Thus, the proof finishes.
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As for LU invariant, it is determined by the property of fidelity. Fidelity is invariant under
local unitary (LU) transformation:

F(UρU †, UσU †) = tr
√

(UρU †)
1
2 UσU †(UρU †)

1
2 (18)

and we have

tr
√

(UρU †)
1
2 UσU †(UρU †)

1
2 = tr

√
U

√
ρU †UσU †U

√
ρU †

= tr
√

U
√

ρσ
√

ρU †

= tr U

√√
ρσ

√
ρU †

= tr
√√

ρσ
√

ρ

= F(ρ, σ ). (19)

Therefore, we show that the RGME is a good entanglement measure.
One of virtues of the geometric approach to entanglement is its straightforward adaptability

to arbitrary multipartite state (of finite dimensions). The revision of the GME has similar
character. There are four differences deserved emphasizing between the RGME and the
GME: (1). The RGME use the fidelity to substitute the overlap, then whatever the given
state is, pure or mixed state, in light of the relation between fidelity and overlap, the RGME
can always be expressed in fidelity form congruously. (2) The revised form abandons the
condition that the closest separable state has the form equation (2), even for the case of pure
state, say nothing of the mixed state scenario. (3) The revised version does not need the convex
hull to consider the case of mixed state like GME which complicates the task of determining
mixed state entanglement, whereas the essence of the problem is attributed to find out the
closest separable state. (4) For the case of pure state ρ, there always exists a bound condition
Ẽsin2(ρ) � Esin2(ρ).

3.2. Examples

In this subsection, we use the RGME to re-calculate the foregoing two examples, the figures are
shown for the convenience of analysis. Therein, the closest separable state of these examples
are given and testified by the method given in [14].

Example 1: its closest separable state reads as following:

σ1 = λ

2

(
1 − λ

2

)
|00〉〈00| +

λ

2

(
1 − λ

2

)
(|00〉〈11| + |11〉〈00|)

+

(
1 − λ

2

)2

|01〉〈01| +
λ2

4
|10〉〈10| +

λ

2

(
1 − λ

2

)
|11〉〈11|, (20)

the RGME is

Ẽsin2 = 1 − F 2
max = 1 −

[(
1 − λ

2

)√
1 − λ + λ

√
1 − λ

2

]2

. (21)

The analytical expression of RE is given in [9]:

Ere(ρ1) = (λ − 2) log

(
1 − λ

2

)
+ (1 − λ) log(1 − λ). (22)

Note that in the whole paper we reckon that the formula of the RE is Ere = minσ∈S tr(ρ log ρ−
ρ log σ), where log denotes logarithm whose base is two. Now, we analyse the relation about
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Figure 1. The curves of the GME and RGME almost coincide and lie below the curve of the RE
which show that the RGME is better to measure the amount of entanglement of this state.

Figure 2. The red field denotes different RGME curves for different random numbers A; the black
line represents the GME. The GGME and the GME are coincident when A → 1.

the GME, the RGME and the RE by virtue of figure 1. From the figure, we see that the value
of the RE is larger than other two entanglement measures. At the same time, the curve of the
GME almost superposes to that of the RGME, which to some extent illustrates that the RGME
is reasonable with regard to the GME.

Example 2: its closest separable state is

σ2 = A|01〉〈01| + (1 − A)|10〉〈10|, (23)

the RGME is

Ẽsin2 = 1 −


√

1

2
(1 − 2A + 2A2 −

√
1 − 4A + 4A2 + AG2 − A2G2)

+

√
1

2
(1 − 2A + 2A2 +

√
1 − 4A + 4A2 + AG2 − A2G2)


2

, (24)

when choosing A as different random numbers, we get different curves of the RGME shown
in figure 2. Obviously, the RGME tends to GME with the increase of A. When A → 1, the
RGME superposes to the GME .

In above all examples, the closest separable state of the RGME is identical to that of the
RE, and they are mixed states. Yet, we must emphasize that it is not the case in the general
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α

Figure 3. The figures about the RE, the concurrence, the GME and the RGME are shown,
in which the curve representing RGME superposes to the curve of GME. Obviously, there is a
relation Ẽsin2 = Esin2 � Ere � concurrence.

situation. Without loss of generality, we are concerned with the state

ρ = α2|00〉〈00| + α
√

1 − α2(|00〉〈11| + |11〉〈00|) + (1 − α2)|11〉〈11|
= (α|00〉 +

√
1 − α2|11〉)(α〈00| +

√
1 − α2〈11|)

= |ξ 〉〈ξ |, (25)

where α ∈ [0, 1]. Its closest separable state under the RE is

σ = α2|00〉〈00| + (1 − α2)|11〉〈11|. (26)

Naturally, the RE for this state is

Ere = −α2 log α2 − (1 − α2) log(1 − α2). (27)

However, the closest separable state under the RGME is

σ ′ =
1 −

√
1 +

√
1 − 4α2(1 − α2)

2

 |00〉〈00| +

√
1 +

√
1 − 4α2(1 − α2)

2
|11〉〈11|. (28)

By calculation, we know σ ′ is a disentangled state without reference to α, because all
eigenvalues of σ ′TB are non-negative (PPT criterion). Accordingly, the RGME is

Ẽsin2 = 1 − F 2
max = 1

2 (1 −
√

1 − 4α2(1 − α2)), (29)

which is equal to the GME

Esin2 = 1

2
(1 −

√
1 − 4α2(1 − α2))

=


1 − α2

(√
2

2
< α < 1

)
,

α2

(
0 � α �

√
2

2

)
.

(30)

If we use the σ ′ to re-calculate the RE, we get the relation Ere(ρ, σ ) � Ere(ρ, σ ′) which
indicates that the closet separable state is indeed the state σ under the RE. In order to
demonstrate their relations explicitly, we show figure 3.
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3.3. Properties of RGME

It is important to investigate the properties of RGME deeply. In this subsection, we give some
propositions with regard to the inequality relations about some measures of entanglement.

Proposition 1. The RGME and the fidelity satisfy a universal relation for any state ρ, σ :

1 − F(ρ, σ ) �
√

Ẽsin2(ρ). (31)

Proof. Make use of the mathematical formula {1 − x �
√

1 − x2, 0 � x � 1}. One can see
quickly, for any state ρ, σ ,

1 − F(ρ, σ ) �
√

1 − F 2(ρ, σ ), (32)

from which and the definition of the RGME, equation (12), the proposition follows. �

Proposition 2. The RGME for bipartite pure states is smaller than the entanglement of
formation or the relative entropy of entanglement, i.e.,

Ẽsin2(ρ) � Ef (ρ) = Ere(ρ) (33)

and the equality is valid only when ρ is separable state.

Proof. When ρ = |ψ〉〈ψ |, and |ψ〉 is decomposed as A and B parts, we have

Bures(ρ) =
√

1 − F 2(ρ, σ ) � − 1
2 tr(ρA log ρA) = 1

2SA(ρ), (34)

where SA(ρ) is the von Neumann reduced entropy. In term of equation (32), then we have

1 − F(ρ, σ ) � 1
2SA(ρ) (35)

under the condition that ρ is bipartite pure state; accordingly, we can deduce that the RGME
satisfies the inequality

Ẽsin2(ρ) � 1 −
(

1 − SA(ρ)

2

)2

= SA(ρ) − S2
A(ρ)

4
� SA(ρ) (36)

and the equality is valid only when SA(ρ) is zero, that is, ρ is separable. �

Due to the existence of Schmidt decomposition [31] in bipartite pure state system, the EF
is equal to the von Neumann reduced entropy and the RE, i.e. SA(ρ) = Ef (ρ) = Ere(ρ), thus,
we arrive at the desired relation.

Proposition 3. The RGME is smaller than the trace distance for any pure state |ψ〉, i.e.

Ẽsin2(|ψ〉) � D(|ψ〉, σ ). (37)

Proof. In the case of pure state ρ = |ψ〉〈ψ |, there exits another relation

1 − F 2(|ψ〉, σ ) � 1
2 tr(||ψ〉〈ψ | − σ |) = D(|ψ〉, σ ), (38)

where D(|ψ〉, σ ) is trace distance between state |ψ〉 and σ . In light of the definition of the
RGME, we obtain the sought inequality finally. �

As we know, among many measures of entanglement, the von Neumann entropy is very
important and it has extensive application. Equations (36) and (37) prompt us to ask what is
the relation between D(ρ, σ ) and S(ρ)?
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Proposition 4. The von Neumann entropy and distance trace satisfy the inequality

S(ρ) � 2D(ρ, σ ) +
1

e
, (39)

under the condition that σ is pure state and the dimension of any state ρ fulfils d � 4.

Proof. Due to Fannes’ inequality, suppose ρ and σ are density matrices such that the trace
distance between them satisfies 1

2 tr(|ρ − σ |) � 1
e
, then

|S(ρ) − S(σ)| � 1
2 tr|ρ − σ | · log d + η

(
1
2 tr|ρ − σ |), (40)

where d is the dimension of the Hilbert space, and η(x) = −x log x. Removing the restriction
that 1

2 tr(|ρ − σ |) � 1
e
, there is an inequality

|S(ρ) − S(σ)| � 1

2
tr|ρ − σ | · log d +

1

e
. (41)

Using the weaker inequality, when S(σ) = 0, i.e. σ is a pure state, it yields

|S(ρ)| � 1

2
tr|ρ − σ | · log d +

1

e
. (42)

Note that in the definition—and throughout this paper—logarithms indicated by ‘log’ are taken
to base two, while ‘ln’ indicates a natural logarithm. When log d

2 � 1, we deduce the relation
d � 4, then we obtain a relation between the von Neumann entropy and distance trace

S(ρ) � tr|ρ − σ | = 2D(ρ, σ ) +
1

e
, (43)

hence the proposition is proved. �

As a subsidiary product, we combine above deduction with the facts

F(ρ, σ ) + D(ρ, σ ) � 1, F 2(ρ, σ ) + D2(ρ, σ ) � 1, (44)

then the unambiguous relation under the condition ρ in pure state becomes

(1 − F)2 � 1 − F � Ẽsin2 � 1 − F 2 � D �
√

1 − F 2 �
√

D. (45)

Thus, we have investigated the relations between different measures of entanglement.
In view of their different physical meaning for measuring the amount of entanglement, we
believe these relations may imply much in many problems such as comparison about different
measures of entanglement, discussion about the bound of different measures of entanglement.

4. RGME of some special classes of states

Progress in the quantification of entanglement for a mixed state has resided primarily in the
domain of bipartite systems. If we can formulate the universal measures of many-particle
system and multipartite system entanglement, they would have many applications [32]. One
purpose of this paper is to achieve some analytical form of the RGME for some special cases
that are interesting in theory. Concretely, we use mathematical induction method to obtain the
expressions of the RGME for two-parameter class of states in 2 ⊗n quantum system, bipartite
maximally entangled mixed state, isotropic state including n-particle d-level case and two
multipartite bound entangled states; the relation between the RGME and the corresponding
GME is also obtained. At the same time, we obtain an important conclusion that the RE is
an upper bound on the RGME for these states. Based on these results, we can clearly see the
advantages of RGME relative to other measures of entanglement.
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4.1. RGME of two-parameter class of states in 2 ⊗ n quantum system

Now, we consider the class of states with two real parameters α and γ in 2 ⊗ n quantum
system. A finite-dimensional truncation of a single two level atom interacting with a single-
mode quantized field [33] can be regarded as a 2 ⊗ n quantum system.

First, we deal with the simple n = 3 case. For 2 ⊗ 3 quantum system, two parameters
state [34] can be expressed as

ρ̃ = β|ψ+〉〈ψ+| + γ |ψ−〉〈ψ−| + β(|00〉〈00| + |11〉〈11|) + α(|02〉〈02| + |12〉〈12|), (46)

where

|φ±〉 = 1√
2
(|00〉 ± |11〉), |ψ±〉 = 1√

2
(|01〉 ± |10〉). (47)

and β is dependent on α and γ by the unit trace condition,

2α + 3β + γ = 1, 0 � α � 1
2 , (48)

remark when 1
2 � γ � 1 the state is entangled. Similar to the method in [35], we know that

the closest separable state of ρ̃ has the following form:

σ̃ ∗ = p1|ψ+〉〈ψ+| + p2|ψ−〉〈ψ−| + p3|00〉〈00| + p4|11〉〈11| + p5|02〉〈02| + p6|12〉〈12|, (49)

where
∑

ipi = 1.
We use convex programming method to determine the concrete form of pi . The basic idea

is: by using the positive definition or semi-positive definition of partial transpose of separable
state σ̃ ∗ and Lagrangian multiplier limitation method to seek for the solution of pi , and then,
we find out the closest separable state for this class of state. The separable criterion is a
necessary and significant condition for 2 ⊗ 2 and 2 ⊗ 3 quantum systems, so there are much
more limitations in the research field. If the value pi makes σ̃ ∗ = ∑

pi |ψi〉〈ψi | nonseparable,
then this method is invalid.

By calculation, the closest separable state of ρ̃ can be expressed as

σ̃ ∗ = α(|02〉〈02| + |12〉〈12|) +
3β + γ

2
|ψ−〉〈ψ−|

+
3β + γ

6
(|φ+〉〈φ+| + |φ−〉〈φ−| + |ψ+〉〈ψ+|). (50)

We need to point out that the detail process was given in our classmate’ unpublished thesis
[36] that is provided in appendix A.

Then, the RE of ρ̃ is

Ere(ρ̃) = S(ρ̃‖σ̃ ∗) = tr(ρ̃ log ρ̃) − tr(ρ̃ log σ̃ ∗)

= 3β log

[
6β

3β + γ

]
+ γ log

[
2γ

3β + γ

]
= (1 − 2α) log

[
2(1 − γ − 2α)

1 − 2α

]
+ γ log

[
γ

1 − γ − 2α

]
. (51)

Now, let us consider complex case, i.e., two-parameter class of states in 2 ⊗ n quantum
system [34] for n � 3, which can be obtained from an arbitrary state in 2 ⊗n quantum system
by LOCC and are invariant under all unitary operations with the form U ⊗U on 2⊗n quantum
system:

ρ = α

1∑
i=0

n−1∑
j=2

|ij〉〈ij | + β(|00〉〈00| + |11〉〈11|) +
β + γ

2
(|01〉〈01| + |10〉〈10|)

+
β − γ

2
(|01〉〈10| + 〈10|〈01|), (52)
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Figure 4. The relative entropy of entanglement (RE) of two-parameter class of states in 2 ⊗ n

quantum system.

where {|ij 〉 : i = 0, 1, j = 0, 1, . . . , n−1} is an orthonormal basis for 2⊗n quantum system,
and the coefficients satisfy the relation

2(n − 2)α + 3β + γ = 1. (53)

Remark when α = 0, this state equals the Werner state in 2 ⊗ 2 quantum system for 0 � γ � 1.
The state ρ is entangled and distillable if and only if 1

2 < γ � 1. We guess its closest separable
state is

σ ∗ = α

1∑
i=0

n−1∑
j=2

|ij〉〈ij | +
3β + γ

6
(|φ+〉〈φ+| + |φ−〉〈φ−| + |ψ+〉〈ψ+|) +

3β + γ

2
|ψ−〉〈ψ−|.

(54)

The above expression is indeed the closest separable state under the RE for the two-parameter
class of states in 2 ⊗ n quantum system which has been analysed in our previous work [36]
(see appendix B).

The RE of two-parameter state is

Ere(ρ) = S(ρ‖σ ∗) = tr(ρ log ρ) − tr(ρ log σ ∗)

= (1 − 2(n − 2)α) log

[
2(1 − γ − 2(n − 2)α)

1 − 2(n − 2)α

]
+ γ log

[
γ

1 − γ − 2(n − 2)α

]
= 3β log

(
6β

3β + γ

)
+ γ log

(
2γ

3β + γ

)
(55)

where

2(n − 2)α + 3β + γ = 1, 0 � α � 1/(2n − 4), 1
2 � γ � 1, (56)

we draw the three-dimensional picture of RE in figure 4.
Now we begin to calculate the analytical expression of the RGME for two-parameter class

of states in 2 ⊗ n quantum system. Since we obtain the expression of the RE, we want to ask
whether the closest separable state under the RE is also the closest separable state under the
RGME? The answer is yes for this state. We present a proof in the following context.

From the definition of the RGME, we know the closest separable state under the RGME
is that under the fidelity. To prove the closest disentangled state to ρ under the fidelity
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metric is σ ∗, that is equation (54), we consider a slight variation around σ ∗ of the form
σλ = (1 − λ)σ ∗ + λσ where σ is any separable state, then we just need to prove

d

dλ
tr
{√√

ρσλ

√
ρ
}

� 0. (57)

Proof.
√

ρσλ

√
ρ = ρ

1
2 [(1 − λ)σ ∗ + λσ ]ρ

1
2 = (1 − λ)ρ

1
2 σ ∗ρ

1
2 + λρ

1
2 σρ

1
2 . (58)

By choosing the appropriate basis sequence, σ ∗ and ρ can be expressed in the following matrix
form:

σ ∗ =
(

A1 0

0 A2

)
, ρ =

(
B1 0

0 B2

)
, (59)

where

A1 =


3β+γ

6 0 0 0

0 3β+γ

3 − 3β+γ

6 0

0 − 3β+γ

6
3β+γ

3 0

0 0 0 3β+γ

6

 ,

B1 =


β 0 0 0

0 β+γ

2
β−γ

2 0

0 β−γ

2
β+γ

2 0

0 0 0 β

 ,

A2 =


α . . . 0

...
. . .

...

0 · · · α

 , B2 =


α . . . 0

...
. . .

...

0 · · · α

 .

(60)

In addition, we can write any separable state σ as diagonal matrix block form

σ =
(

X1 0

0 X2

)
, (61)

then we can deduce√
(1 − λ)ρ

1
2 σ ∗ρ

1
2 + λρ

1
2 σρ

1
2 = √

1 − λ

(
B

1
2

1 A1B
1
2

1

) 1
2

0

0
(
B

1
2

2 A2B
1
2

2

) 1
2


+

√
λ

(
B

1
2

1 X1B
1
2

1

) 1
2

0

0
(
B

1
2

2 X2B
1
2

2

) 1
2

 . (62)

We have
d

dλ
tr
√√

ρσλ

√
ρ = d

dλ

(√
1 − λ

[
FA1 + FA2

]
+

√
λ
[
FX1 + FX2

])
= −1

2
(1 − λ)−

1
2
(
FA1 + FA2

)
+

1

2
λ− 1

2
(
FX1 + FX2

)
, (63)
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Figure 5. Revised geometric measure of entanglement (RGME) and negativity for the two-
parameter class of states in 2 ⊗ n quantum system, respectively.

where FA1 = tr
√

B
1
2

1 A1B
1
2

1 , FA2 = tr
√

B
1
2

2 A2B
1
2

2 and FX1 = tr
√

B
1
2

1 X1B
1
2

1 , FX2 =
tr
√

B
1
2

2 X2B
1
2

2 , respectively. We put λ = 0 into the above expression, we get

d

dλ
tr
{√√

ρσλ

√
ρ
} = −1

2

(
FA1 + FA2

)
. (64)

Because the fidelity is always larger than or equal to 0, finally we obtain the relation

d

dλ
tr
{√√

ρσλ

√
ρ
}

� 0. (65)

The proof comes to an end. �

The RGME for the two-parameter class of states in 2 ⊗ n quantum system is thus

Ẽsin2 = 1 − F 2
n = 1 −

(
2(n − 2)α +

3
√

β(3β + γ )√
6

+

√
3βγ + γ 2

√
2

)2

= 1 −
(

1 − γ − 3β +
3
√

β(3β + γ )√
6

+

√
γ (3β + γ )√

2

)2

, (66)

where

0 � α � 1

2n − 4
, −1

3
� β � 1

6
,

1

2
� γ � 1. (67)

The concrete proof process is given in appendix C.
In virtue of the results of previous works [34, 36], we know that the negativity of this

class of state is

N =
(

2(n − 2)α + 3

∣∣∣∣β + γ

2

∣∣∣∣ +
1

2
|3β − γ |

)
− 1

= −3β − γ + 3

∣∣∣∣β + γ

2

∣∣∣∣ +
1

2
|3β − γ |. (68)

Of course, the corresponding three-dimensional picture of the RGME and the negativity can
be drawn in figure 4.

We can know the relation of three measures of entanglement for the two-parameter class
of states in 2 ⊗ n quantum system by drawing figure 5, i.e. Ẽsin2 � Ere � negativity.
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Figure 6. RGME, RE, negativity for the two-parameter class of states in 2 ⊗ n quantum system.
There is a relation Ẽsin2 � Ere � negativity clearly.

The tight upper bound of EOF for the 2 ⊗ n quantum system is given in [37]: Ef �
negativity. And [38] presents a lower bound for EOF on 2 ⊗ n system and compares this
lower bound with the RE: Ere � Ef . Besides, we know that any 2 ⊗ n quantum state
can be transformed to two-parameter class of states, equation (52), by LOCC. Based on the
requirement that the measure of entanglement is not increased under LOCC, we acquire the
relation for the two-parameter class of states in 2 ⊗ n quantum system:

Ẽsin2 � Ere � Ef � negativity. (69)

From above analysis and comparison, we see that using the RGME to measure the
entanglement is more appropriate for the two-parameter class of states in 2 ⊗ n quantum
system.

4.2. RGME of maximally entangled mixed state

Ishizaka and Hiroshima first introduce the concept of the maximally entangled mixed state
[39] for which no more entanglement can be created by global unitary operation, that is, acting
on the system as a whole.

In theory, by investigating the maximally entangled mixed state, we can know the bounds
on how the degree of mixing of a state limits its entanglement. In practice, the mixture of
the density matrix is inevitably increased by the coupling between the quantum system and
its surrounding environment in all realistic systems. Therefore, it is extremely important to
understand the nature of entanglement for general mixed states between two extremes of pure
states and a maximally mixed state.

Here, we extend results of two-parameter class of states in 2 ⊗n (n > 2) quantum system
to the maximally entangled mixed state [40] of two particles’ high dimensional situation. Let
the eigenvalue decomposition of ρ, i.e. equation (52), be

ρ = ���†, (70)

where the eigenvalues λi are sorted in nonascending order. Obviously, we are capable of
obtaining a mixed state ρ ′ which achieves maximal negativity by applying the following
global unitary transformation:
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U = (U1 ⊗ U2)



0 · · · 0 0 · · · 0 0 1

1/
√

2 · · · 0 0 · · · 0 1/
√

2 0

0 · · · 1 0 · · · 0 0 0

...
...

...
... · · · ...

...
...

−1/
√

2 · · · 0 0 · · · 0 1/
√

2 0

0 · · · 0 0 · · · 1 0 0

...
...

... 0 · · · ...
...

...

0 0 0 1 0 0 0 0



Dφ�†, (71)

where U1, U2 are the two subsystem local unitary operations, respectively. Dφ is a unitary
diagonal matrix. The transformed state is

ρ ′ = UρU † = λ4|00〉〈00| +
λ1

2
(|01〉〈01| − |01〉〈10| − |10〉〈01| + |10〉〈10|)

+ λ3|0(n − 1)〉〈0(n − 1)| + λ2|1(n − 1)〉〈1(n − 1)|
= λ4|00〉〈00| + λ1|ψ−〉〈ψ−| + λ3|0(n − 1)〉〈0(n − 1)|

+ λ2|1(n − 1)〉〈1(n − 1)|, (72)

where λi(i = 1, 2, 3, 4) are four eigenvalues which satisfy

λ1 + λ2 + λ3 + λ4 = 1. (73)

The negativity of ρ ′ is same as the counterpart of two-qubit situation [40]. Negativity of this
state is also the maximum:

N(ρ ′) = max(0,
√

(λ1 − λ3)2 + (λ2 − λ4)2 − λ2 − λ4). (74)

The closest separable state of ρ ′ has the following form:

σ ′ = p4|00〉〈00| + p5|11〉〈11| + p1|ψ−〉〈ψ−|
+ p3|0(n − 1)〉〈0(n − 1)| + p2|1(n − 1)〉〈1(n − 1)|. (75)

By convex programming method, we get the concrete form of state σ ′,

σ ′ = (λ1 + 2λ4)
2

4(λ1 + λ4)
|00〉〈00| +

λ2
1

4(λ1 + λ4)
|11〉〈11|

+
λ1(λ1 + 2λ4)

4(λ1 + λ4)
(|01〉〈01| + |10〉〈10| − |01〉〈10| − |10〉〈01|)

+ λ3|0(n − 1)〉〈0(n − 1)| + λ2|1(n − 1)〉〈1(n − 1)|, (76)

the RE of ρ ′ is

Ere(ρ
′) = λ1 log

2(λ1 + λ4)

(λ1 + 2λ4)
+ λ4 log

4λ4(λ1 + λ4)

(λ1 + 2λ4)2
. (77)

It is easy to testify that the closest separable state under the RE is same as that under the
fidelity by the same method for the two-parameter class of states in 2 ⊗ n quantum system.

We can prove that the fidelity of the maximally entangled mixed state ρ ′ is

F = λ2 + λ3 +
(λ1 + 2λ4)

2

√
λ4

λ1 + λ4
+ λ1

√
λ1 + 2λ4

2(λ1 + λ4)
. (78)
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Above formula of fidelity is without reference to n (see appendix D). Then, the RGME is

Ẽsin2 = 1 −
(

1 − λ1 − λ4 +
(λ1 + 2λ4)

2

√
λ4

λ1 + λ4
+ λ1

√
λ1 + 2λ4

2(λ1 + λ4)

)2

, (79)

where λ1 + λ2 + λ3 + λ4 = 1. By comparing the amount of entanglement for different
entanglement measures, equations (77) and (79), we find out that the RE is an upper bound on
the RGME for this special state, i.e.,

Ẽsin2(ρ) � Ere(ρ), (80)

which also shows that the RGME we use to measure the entanglement is more appropriate for
this class of state system.

4.3. RGME of isotropic states

Since the isotropic states are put forward, the properties of isotropic states have been
investigated and they have many applications in different fields [44–46]. The state is called
isotropic because it is invariant under any UA ⊗ U ∗

B transformation:

(UA ⊗ U ∗
B)ρα(UA ⊗ U ∗

B)† = ρα, (81)

where U is a unitary operator and U ∗ is its conjugate [45]. In essence, the isotropic states are a
class of mixed states which are convex mixtures of the maximally mixed state, Id2 = (I⊗I )/d2,
with a maximally entangled state |φ+〉 = 1√

d

∑d−1
i=0 |ii〉.

Here, we present some new results about measure of entanglement for the isotropic states
including multi-particle and high dimensional generalization. Simultaneously, we review
some other measures of entanglement about the isotropic states.

First of all, for all isotropic qubit state

ρα = α
∣∣φ2

+

〉〈
φ2

+

∣∣ +
1 − α

4
I

=


1+α

4 0 0 α
2

0 1−α
4 0 0

0 0 1−α
4 0

α
2 0 0 1+α

4

 , (82)

where
∣∣φ2

+

〉 = 1√
2
(|00〉 + |11〉).

We know when − 1
3 � α � 1

3 , ρα is a separable state; when 1
3 < α � 1, ρα is an entangled

state, so the closest separable state is σ = ρ 1
3
. The RGME is

Ẽsin2 = 1 − F 2 = 1 −
(

1

2

√
3(1 − α)

2
+

1

2

√
1 + 3α

2

)2

. (83)
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For isotropic qutrit entangled state:

ρα = α
∣∣φ3

+

〉〈
φ3

+

∣∣ +
1 − α

9
I

=



1+2α
9 0 0 0 α

3 0 0 0 α
3

0 1−α
9 0 0 0 0 0 0 0

0 0 1−α
9 0 0 0 0 0 0

0 0 0 1−α
9 0 0 0 0 0

α
3 0 0 0 1+2α

9 0 0 0 α
3

0 0 0 0 0 1−α
9 0 0 0

0 0 0 0 0 0 1−α
9 0 0

0 0 0 0 0 0 0 1−α
9 0

α
3 0 0 0 α

3 0 0 0 1+2α
9



, (84)

where
∣∣φ3

+

〉 = 1√
3
(|00〉 + |11〉 + |22〉).

We know when − 1
8 � α � 1

4 , ρα is a separable state; when 1
4 < α � 1, ρα is an entangled

state. The closest separable state is σ = ρ 1
4
. The RGME is

Ẽsin2 = 1 − F 2 = 1 −
(

1

3

√
16(1 − α)

3
+

1

3

√
1 + 8α

3

)2

. (85)

For isotropic qu-quartit entangled state:

ρα = α
∣∣φ4

+

〉〈
φ4

+

∣∣ +
1 − α

16
I, (86)

where
∣∣φ4

+

〉 = 1
2 (|00〉 + |11〉 + |22〉 + |33〉).

We know when − 1
15 � α � 1

5 , ρα is a separable state; when 1
5 < α � 1, ρα is an

entangled state. The closest separable state is σ = ρ 1
5
. The RGME is

Ẽsin2 = 1 − F 2 = 1 −
(

1

4

√
45(1 − α)

4
+

1

4

√
1 + 15α

4

)2

. (87)

For the d × d isotropic state:

ρα = 1

d2

(
1 +

d

2
α�

)
, (88)

where � = ∑d2−1
i=1 ciγ

i⊗γ i, ci = ±1, γ i is Gell–Mann matrix.
We know when − 1

d2+1 � α � 1
d+1 , ρα is a separable state; when 1

d+1 < α � 1, ρα is an
entangled state. The closest separable state is

σ = ρ 1
d+1

= 1

d2

(
1 +

d

2 (d + 1)
�

)
. (89)

It is easy to get the analytical expression of the fidelity

F = d2 − 1

d

√
(1 − α)

d(d + 1)
+

1

d

√
1 + (d2 − 1)α

d
, (90)



3524 Y Cao and A M Wang

The RGME is

Ẽsin2 = 1 − F 2 = 1 −
(

d2 − 1

d

√
(1 − α)

d(d + 1)
+

1

d

√
1 + (d2 − 1)α

d

)2

. (91)

Furthermore, the isotropic state can be expressed as [17, 31]

ρiso = 1 − F ′

d2 − 1
(I − |φ+〉〈φ+|) + F ′|φ+〉〈φ+|, (92)

where |φ+〉 = 1√
d

∑d−1
i=0 |ii〉, F ′ = Tr(ρiso|φ+〉〈φ+|) is also the fidelity, different from the

fidelity in the RGME.
The expression of the GME is given in [19]:

Esin2 = 1 − 1

d
(
√

F ′ +
√

(1 − F ′)(d − 1))2. (93)

We can testify when d = 2, F ′ = 1+3α
4 , we get the GME which is equal to the RGME.

Esin2 = 1 −
(

1

2

√
1 + 3α

2
+

1

2

√
3(1 − α)

2

)2

= Ẽsin2 , (94)

when d = 3, F ′ = 1+8α
9 , the GME is equal to the RGME:

Esin2 = 1 −
(

1

3

√
1 + 8α

3
+

1

3

√
16(1 − α)

3

)2

= Ẽsin2 , (95)

when d = 4, F ′ = 1+15α
16 , the GME is equal to the RGME:

Esin2 = 1 −
(

1

4

√
45(1 − α)

4
+

1

4

√
1 + 15α

4

)2

= Ẽsin2 , (96)

when the dimension is d, F ′ = 1+(d2−1)α
d2 , GME and RGME are also equal:

Esin2 = 1 −
(

d2 − 1

d

√
(1 − α)

d(d + 1)
+

1

d

√
1 + (d2 − 1)α

d

)2

= Ẽsin2 . (97)

These not only show that the GME and the RGME are equal for the isotropic states, but
also show that our revision for the GME is reasonable. The contour figure of the isotropic
state is given in figure 7. The RGME in the undertone field is greater than that in the dark
field.

The concrete expression of RE [47] is

Ere = log d + F ′ log F ′ + (1 − F ′) log
1 − F ′

d − 1
, (98)

where F ′ = 1+(d2−1)α

d2 .
For this class of states, we still obtain the same relation

Ẽsin2(ρ) � Ere(ρ) (99)

like the special states in 2 ⊗n quantum system by drawing figures. This result emphasizes the
rationality of the revision and it is an important conclusion through this paper simultaneously.
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Figure 7. The contour figure for the revised geometric measure of entanglement (RGME) of the
isotropic states, where undertone field denotes higher density than counterpart in the dark field.

Other measures of entanglement about the isotropic state have been obtained, concrete
results are summarized in the following contexts. First, concurrence and I-concurrence also
have been given in [47, 48]. The concurrence for the qubit isotropic state is

C =


0 F ′ <

1

2
,

2F ′ − 1
1

2
� F ′ � 1,

(100)

qutrit isotropic state, I-concurrence (generalized concurrence) is

C =


0 F ′ <

1

3
,

√
3

(
F ′ − 1

3

)
1

3
� F ′ � 1.

(101)

In turn, qudit isotropic state, I-concurrence is

C =


0 F ′ <

1

d
,√

2d

d − 1

(
F ′ − 1

d

)
1

d
� F ′ � 1.

(102)

Then, the EOF for the isotropic state is

Ef =



0, F ′ <
1

d
,

h(x) + (1 − x) log(d − 1),
1

d
� F ′ <

(d − 1)(1 − F ′)
F ′ ,

d log
(d − 1)(F ′ − 1)

d − 2
+ log d,

4(d − 1)

d2
� F ′ � 1,

(103)

where h(x) = −x log x − (1 − x) log(1 − x) and x = F ′
d

(
1 +

√
(d−1)(1−F ′)

F ′
)2

. Note when

d →∝, we have Ef → F ′ log d.
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As for the relation about the concurrence, the RGME and the RE, we find their relation is
uncertain by numerical analysis.

Now, we consider the generalized case, n-particle and d-level isotropic state [12] is
expressed as follows:

ρ(α) = (1 − α)
I

dn
+ α|ψ+〉〈ψ+|, 0 � α � 1, (104)

where |ψ+〉 = 1√
d

∑d
i=1 |ii · · · i〉. The closest separable state is

ρ(α0) = (1 − α0)
I

dn
+ α0|ψ+〉〈ψ+|, α0 = 1

1 + dn−1
, (105)

when n = 3, d = 2

F = 7

√
1 − α

80
+

√
3(1 + 7α)

80
, (106)

when n = 3, d = 3

F = 26

√
1 − α

810
+

√
2(1 + 26α)

405
, (107)

when n = 4, d = 2

F = 15

√
1 − α

288
+

√
1 + 15α

96
. (108)

By the mathematical induction method, we get

F = (dn − 1)

√
1 − α

dn(dn + d)
+

√
1 + (dn − 1)α

dn

d + 1

dn + d
, (109)

notice when n = 2, we get formula (90) of the two-particle isotropic state again.
Finally, the explicit expression of the RGME for the generalized case is

Ẽsin2 = 1 −
(

(dn − 1)

√
1 − α

dn(dn + d)
+

√
1 + (dn − 1)α

dn

d + 1

dn + d

)2

, (110)

when n = 2, we get formula (91) of the two-particle isotropic state again. These indicate that
our revision is reasonable too.

4.4. RGME of some multi-particle bound entangled states

Multi-particle entanglement exhibits a much richer structure than biparticle entanglement; even
in the simplest case, the quantification of multi-particle entanglement is a hard computable
problem. It is thus worth seeking cases in which one can explicitly obtain an expression to
measure the amount of entanglement.

Bound multi-particle entangled states, the peculiar class of states, play an important role in
many calculations of entanglement measure. Here, we analytically determine the entanglement
in terms of RGME for two multi-particle bound entangled states in [20] by a purification
procedure. The result shows that the RGME is equal to the GME which elucidates that the
RGME is an appropriate measure of entanglement compare to other measures of entanglement,
again. In order to explain explicitly, we give a requisite theorem about purification [30].

Uhlmann theorem. Assume ρ, σ are states of quantum system Q, introduce the second
quantum system R with dimension greater than or equal to the dimension of Q, then

F(ρ, σ ) = max|〈ϕ|ψ〉|, (111)

where the maximum runs over all purification |ψ〉 of ρ, |ϕ〉 of σ in RQ.
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First, we consider the Smolin’s four-party unlockable bound entangled state:

ρABCD = 1

4

3∑
i=0

(|ψi〉〈ψi |)AB ⊗ (|ψi〉〈ψi |)CD

= 1

4

3∑
i=0

|Xi〉〈Xi |, (112)

where

|X0〉 = 1√
2
(|0000〉 + |1111〉), |X1〉 = 1√

2
(|0011〉 + |1100〉),

|X2〉 = 1√
2
(|0101〉 + |1010〉), |X3〉 = 1√

2
(|0110〉 + |1001〉).

(113)

We can see ρABCD has been written in the eigenvalue decomposition itself, that is

ρABCD = 1

4

3∑
i=0

|Xi〉〈Xi | =
3∑

i=0

pi |Xi〉〈Xi |. (114)

Assume that the closest separable state is σ , its eigenvalue decomposition is σ =∑3
i=0 qi |φ〉〈φ|, where q0 = 1, q1 = q2 = q3 = 0, |φ〉 = ⊗3

i=0
(ci |0〉 + si |1〉), where

ci ≡ cos θi, si ≡ sin θi with 0 � θi � π
2 , so

|ψ〉 =
3∑

i=0

√
pi |Xi〉|iRA〉, |ϕ〉 =

3∑
i=0

√
qi |φ〉|iRB 〉 = |φ〉|iRB 〉. (115)

Because of arbitrariness of purification, we choose iRA = iRB , then

F = 〈ϕ|ψ〉 = 〈φ|
3∑

i=0

√
pi |Xi〉 =

3∑
i=0

√
pi〈φ|Xi〉

=
√

p0

2
(c1c2c3c4 + s1s2s3s4) +

√
p1

2
(c1c2s3s4 + s1s2c3c4)

+

√
p2

2
(c1s2c3s4 + s1c2s3c4) +

√
p3

2
(c1s2s3c4 + s1c2c3s4), (116)

by Cauchy–Schwarz inequality 〈v|v〉〈w|w〉 � |〈v|w〉|2, we obtain

F =
√

1

2
, Ẽsin2 = 1

2
. (117)

In addition, [20] conjectures that its closest separable mixed state is

σ = 1
8 (|0000〉〈0000| + |1111〉〈1111|) + |0011〉〈0011| + |1100〉〈1100|

+ |0101〉〈0101| + |1010〉〈1010| + |0110〉〈0110| + |1001〉〈1001|. (118)

We compute the RGME using above suspected closet separable state. The results are indeed
F = 1√

2
, Ẽsin2 = 1

2 which are same as equation (117). Hence, we show that the conjecture is
valid from the inverted angle.

Next, we consider the Dur’s N-party Bell-inequality-violating bound entangled states
(N � 4) [49]

ρN(x) = x|ψG〉〈ψG| +
1 − x

2N

N∑
k=1

(Pk + P̄k), (119)
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where

|ψG〉 = 1√
2
(|0⊗N 〉 + |1⊗N 〉),

PK = |uk〉〈uk|, |uk〉 = |0〉1|0〉2 · · · |1〉k · · · |0〉N,

P̄K = |vk〉〈vk|, |vk〉 = |1〉1|1〉2 · · · |0〉k · · · |1〉N .

(120)

The eigenvalue decomposition can be conveniently written as

ρN(x) =
N−1∑
i=0

pi |ξi〉〈ξi | = |ψ(x, {q, r})〉〈ψ(x, {q, r})|,

σ = |φ〉〈φ|,
(121)

where

|ψ(x, {q, r})〉 = √
x|ψG〉 +

√
1 − x

N∑
k=1

(
√

qk|uk〉 +
√

rk|vk〉). (122)

Through the way of purification, we obtain

|ψ〉 =
N−1∑
i=0

√
pi |ξi〉|iRA〉, |ϕ〉 =

N−1∑
i=0

√
qi |φ〉|iRB 〉. (123)

Choose iRA = iRB , then we have

F = 〈ϕ|ψ〉 = 〈ϕ|
N−1∑
i=0

√
pi |ξi〉

=
√

x

2
(c1 · · · cN + s1 · · · sN) +

√
1 − x

N∑
k=1

(
√

qkc1 · · · sk · · · cN +
√

rks1 · · · ck · · · sN),

(124)

similarly, using the Cauchy–Schwarz inequality, we obtain

F =
√

2 − x

2
, Ẽsin2 = x

2
. (125)

It is clear that the GME and the RGME are equal for above two bound entangled states. A
conjecture concerning the closest separable state of Dur’s bound entangled state is presented
in [20]. The suspected form is

ρN(x) = x(|0 · · · 0〉〈0 · · · 0| + |1 · · · 1〉〈1 · · · 1|) +
1 − x

2N

N∑
k=1

(Pk + P̄k). (126)

By Uhlmann theorem, we can easily obtain

|ψ〉 = √
x|0 · · · 0〉|iR〉 +

N∑
k=1

√
1 − x

2N
Pk|iR〉 +

N∑
k=1

√
1 − x

2N
P̄k|iR〉 +

√
x|1 · · · 1〉|iR〉,

|ϕ〉 =
√

x

2
|0 · · · 0〉|iR〉 +

N∑
k=1

√
1 − x

2N
Pk|iR〉 +

N∑
k=1

√
1 − x

2N
P̄k|iR〉 +

√
x

2
|1 · · · 1〉|iR〉.

(127)

If the overlap satisfies 〈ϕ|ψ〉 = √
1 − x

2 , then the suspected separable state is valid. But the
result of computation does not satisfy this condition, so we say this conjecture is invalid.

Thus, we have presented analytical results on how much entanglement is bound in two
distinct multipartite bound entanglement states using the revised measure. For these states,
the RE is still an upper bound on the RGME. For example, the RE of the Smolin state is 1
[20] which is larger than its RGME 1

2 .
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5. Conclusion

The merit of this revised measure RGME lies on its suitability for any-partite system with any
dimension. The revision of the GME becomes more accurate. Because the RGME abandons
the condition that the closest separable state is pure state, even for the case of the pure state,
simultaneously uses the fidelity to substitute the overlap in view of the relation between the
fidelity and the overlap, hence it can be expressed congruously. The essence of the problem
is attributed to find out the closest separable state, naturally, we need not use the convex hull
construction to consider the case of the mixed state. We have presented analytical results
about measure of entanglement of some special multi-particle cases for which other measures
of entanglement are bigger than RGME, hence the advantage of RGME is exhibited clearly.

Some properties of RGME are presented in the proposition form. We discover that the
RGME is smaller than or equal to the EOF (or the ER) in the bipartite pure state setting. For
any pure state, the RGME is smaller than or equal to the trace distance. Besides, we obtain a
relation between the von Neumann entropy and the trace distance.

The revised entanglement quantifier is used to quantify the entanglement of some special
states. We acquire two main bound conditions, one is Ẽsin2 (ρ) � Esin2 (ρ) for the case of
pure state, another is Ẽsin2 � Ere � Ef � negativity for the two-parameter class of states
in 2 ⊗ n quantum system. The bound condition Ẽsin2 � Ere is still valid for the bipartite
maximally entangled state, isotropic state, Smolin and Dur multipartite bound states. From
these conclusions, we see that our RGME is reasonable and has explicit application.

However, we should point out the disadvantage of RGME. Like the RE, the search of the
closest separable state is necessary for calculation. In fact, this is a tough task. Certainly,
GME and EOF use the convex hull construction to deal with the case of mixed state which
is not easier than the former. Fortunately, for some special states, the closest separable state
under RE is also that under RGME, which simplifies the difficulty greatly and makes the
calculation realizable. From this sense, we think this quantifier outbalances other candidates
of entanglement.

In order to alleviate and overcome the difficulty of finding the closest separable state,
people provide many methods for calculation of RE in the literature, the convex programming
method [35], the numerical value analysis method [13], etc, but they are effective only
for the special scenarios. The avail method which suits to any state is to have a guess to
what the minimum for a pure state should be, then use the formal proof to testify, i.e.
considering the gradient, see [13].

Note an entanglement monotone derived from Grover’s algorithm called the Groverian
entanglement is presented in [50, 51]. For a pure state, the Groverian entanglement is equal
to the GME, but its physical meanings and springboards are completely different, because the
Groverian entanglement is motivated by a quantum algorithm, while the GME is motivated
from a geometric viewpoint. Groverian entanglement demonstrates how well a state performs
an input to Grover’s search algorithm depends critically upon the entanglement presented
in that state; the more the entanglement, the less well the algorithm performs. The GME
is the sine of the angle between the pure state and its closest separable state; the stronger
the entanglement of state becomes, the larger the angle between them is. The Groverian
entanglement is introduced just for the pure state of multiple qubits, GME is suitable for any-
particle system with any dimension. On the basis of the results about pure states, the Groverian
entanglement is generalized to the case of mixed states [52], but the operational explanation
cannot be generalized to mixed states. In this paper the GME is revised, while the RGME
still maintains the inherent advantages of the GME and has clear physical meaning [53]. It
happens that the forms of generalized Groverian entanglement [52] and the RGME provided
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in this paper are coincident. It is worth emphasizing that our work finished independently and
in a different way.

To the best of our knowledge, corresponding results have not been obtained for other
measures of entanglement. Recently, a connection is identified between the GME and the
entanglement witnesses [21], which can in principle be measured locally. So, we can render
the GME experimentally verifiable. The connection between the generalized robustness and
the geometric measure of entanglement is also presented in [54]. In view of these works, we
wish to find out the deeper relation between the RGME and other measures of entanglement.

In conclusion, we believe that our analysis is helpful for better understanding the essence
of amount of the entanglement. Because many entangled quantifiers exist, it is important to
explore their relations. We believe this should be a major goal in the theory of entanglement
and hope that the discussion in this paper can give some help in this sense.
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Appendix A

In this section, we use the convex programming method to find the closest separable state of
the two-parameter 2 ⊗ 3 quantum system:

ρ̃ = β|ψ+〉〈ψ+| + γ |ψ−〉〈ψ−| + β(|00〉〈00| + |11〉〈11|) + α(|02〉〈02| + |12〉〈12|). (A.1)

In light of the method in [35], the closest separable state of ρ̃ has the following form:

σ̃ ∗ = p1|ψ+〉〈ψ+| + p2|ψ−〉〈ψ−| + p3|00〉〈00| + p4|11〉〈11| + p5|02〉〈02| + p6|12〉〈12|,
(A.2)

where
∑

ipi = 1. Then, the partial transpose of σ̃ ∗ is

(σ̃ ∗)TB = p1

2
(|01〉〈01| + |00〉〈11| + |11〉〈00| + |10〉〈10|)

+
p2

2
(|01〉〈01| − |00〉〈11| − |11〉〈00| + |10〉〈10|)

+ p3|00〉〈00| + p4|11〉〈11| + p5|02〉〈02| + p6|12〉〈12|. (A.3)

Because σ̃ ∗ is separable state, we know (σ̃ ∗)TB should be positive-definite or semi-positive
definite matrix according to the separable criterion, so we obtain an inequality condition

p3p4 −
(

p1 − p2

2

)2

� 0. (A.4)

The RE of ρ̃ can be expressed as

S(ρ̃‖σ̃ ∗) = tr(ρ̃ log ρ̃) − tr(ρ̃‖σ̃ ∗)
= tr(ρ̃ log ρ̃) + f (pi). (A.5)
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Let

F(pi) = f (pi) + λ

(∑
i

pi − 1

)
+ η

(
p3p4 −

(
p1 − p2

2

)2
)

= −(β log p1 + γ log p2 + β log p3 + β log p4 + α log p5 + α log p6)

+ λ

(∑
i

pi − 1

)
+ η

(
p3p4 −

(
p1 − p2

2

)2
)

, (A.6)

where λ, η are Lagrange multipliers. The problem comes to solve the extremum of f (pi) with
a constraint, i.e. solve the following equations set:

∂F (pi)

∂pj

= 0, j = 1, 2, 3, 4,

∑
ipi − 1 = 0, η

(
p3p4 −

(
p1 − p2

2

)2
)

= 0, η � 0.

(A.7)

Through calculation we get two groups of solution. The first group of solution is

p1 = p3 = p4 = 3β + γ

6
, p2 = 3β + γ

2
, p5 = p6 = α. (A.8)

The second group of solution is

p′
1 = 3β + γ

2
, p′

2 = γ (3β + γ )

2(2β + γ )
,

p′
3 = p′

4 = β(3β + γ )

2(2β + γ )
, p′

5 = p′
6 = α.

(A.9)

Due to the equation

f (pi) = −(β log p1 + γ log p2 + β log p3 + β log p4 + α log p5 + α log p6), (A.10)

and the relations

1/2 � γ � 1, β > 0, (A.11)

we know

f (pi) � f (p′
i ). (A.12)

Evidently, we choose the first group of solution. At the end, we obtain the closest separable
state of ρ̃:

σ̃ ∗ = α(|02〉〈02| + |12〉〈12|) +
3β + γ

2
|ψ−〉〈ψ−|

+
3β + γ

6
(|φ+〉〈φ+| + |φ−〉〈φ−| + |ψ+〉〈ψ+|). (A.13)

Appendix B

In this appendix, we show a proof that the closest separable state of two-parameter class of
stats in 2 ⊗ n quantum system

ρ = α

1∑
i=0

n−1∑
j=2

|ij〉〈ij | + β(|00〉〈00| + |11〉〈11|) +
β + γ

2
(|01〉〈01| + |10〉〈10|)

+
β − γ

2
(|01〉〈10| + 〈10|〈01|) (B.1)
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is the state

σ ∗ = α

1∑
i=0

n−1∑
j=2

|ij〉〈ij | +
3β + γ

6
(|φ+〉〈φ+| + |φ−〉〈φ−| + |ψ+〉〈ψ+|) +

3β + γ

2
|ψ−〉〈ψ−|,

(B.2)

where |ij 〉 : i = 0, 1, j = 0, 1, . . . , n − 1.
Our proof goes as follows: if σ ∗ is the closest separable state of entangled state ρ, then

the value of differential coefficient d
dx

S(ρ‖(1 − x)σ ∗ + xσ) is non-negative, where σ is any
separable state. However, if σ ∗ was not a minimum the above gradient would be strictly
negative which is a contradiction.

Proof. For any given positive operator A, we have

log A =
∫ ∞

0

At − 1

A + t

dt

1 + t2
. (B.3)

Let

f (x, σ ) = S(ρ‖(1 − x)σ ∗ + xσ), (B.4)

then
∂f

∂x
(0, σ ) = − lim

x→0
tr

{
ρ(log((1 − x)σ ∗ + xσ) − log σ ∗)

x

}
= tr

(
ρ

∫ ∞

0
(σ ∗ + t)−1(σ ∗ − σ)(σ ∗ + t)−1 dt

)
= 1 −

∫ ∞

0
tr(ρ(σ ∗ + t)−1σ(σ ∗ + t)−1) dt

= 1 −
∫ ∞

0
tr((σ ∗ + t)−1ρ(σ ∗ + t)−1σ) dt. (B.5)

By choosing the appropriate basis sequence, σ ∗ and ρ can be expressed in the following matrix
form:

σ ∗ =
(

A1 0

0 A2

)
, ρ =

(
B1 0

0 B2

)
, (B.6)

where

A1 =


3β+γ

6 0 0 0

0 3β+γ

3 − 3β+γ

6 0

0 − 3β+γ

6
3β+γ

3 0

0 0 0 3β+γ

6

 ,

B1 =


β 0 0 0

0 β+γ

2
β−γ

2 0

0 β−γ

2
β+γ

2 0

0 0 0 β

 , (B.7)

A2 =


α . . . 0

...
. . .

...

0 · · · α

 , B2 =


α . . . 0

...
. . .

...

0 · · · α

 .
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A2, B2 is (2n − 4) × (2n − 4) diagonal matrices with diagonal element α, then

(σ ∗ + t)−1ρ(σ ∗ + t)−1 =
(

(A1 + t)−1 0

0 (A2 + t)−1

)
.

(
B1 0

0 B2

)

.

(
(A1 + t)−1 0

0 (A2 + t)−1

)

=
(

(A1 + t)−1B1(A1 + t)−1 0

0 (A2 + t)−1B2(A2 + t)−1

)
. (B.8)

�

Let

g =
∫ ∞

0
(σ ∗ + t)−1ρ(σ ∗ + t)−1 dt, (B.9)

through some calculations, we obtain

g =
(

C1 0

0 E

)
, (B.10)

where

C1 =


6β

3β+γ
0 0 0

0 1 6β

3β+γ
− 1 0

0 6β

3β+γ
− 1 1 0

0 0 0 6β

3β+γ

 , (B.11)

where E is the identity matrix of (2n − 4) × (2n − 4). Because 2(n − 2)α + 3β + γ = 1, 0 �
α � 1/(2n − 4) and 1/2 � γ � 1, we have

0 � 6β

3β + γ
� 1. (B.12)

Let σ = |η〉〈η| ⊗ |ξ 〉〈ξ |, where |η〉 = ∑
n an|n〉 and |ξ 〉 = ∑

n bn|n〉 are orthogonal
normalization vectors, then

∂f

∂x
(0, σ ) − 1 = − tr(gσ )

= −
[

6β

3β + γ
(|a0|2|b0|2 + |a1|2|b1|2)

+

(
6β

3β + γ
− 1

)
(a0a

∗
1b1b

∗
0 + a∗

0a1b
∗
1b0)

+ |a0|2|b1|2 + |a1|2|b0|2 +
1∑

i=0

n−1∑
j=2

|ai |2|bj |2
]
. (B.13)

Due to 0 � 6β

3β+γ
� 1, we get∣∣∣∣∂f∂x

(0, σ ) − 1

∣∣∣∣ = 6β

3β + γ
(|a0|2|b0|2 + |a1|2|b1|2) +

6β

3β + γ
(a0a

∗
1b1b

∗
0 + a∗

0a1b
∗
1b0)

+ |a0b1 − a1b0|2 +
1∑

i=0

n−1∑
j=2

|ai |2|bj |2
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� (|a0|2|b0|2 + |a1|2|b1|2) + (a0a
∗
1b1b

∗
0 + a∗

0a1b
∗
1b0)

+ |a0b1 − a1b0|2 +
1∑

i=0

n−1∑
j=2

|ai |2|bj |2

= |a0|2|b0|2 + |a1|2|b1|2 + |a0|2|b1|2 + |a1|2|b0|2 +
1∑

i=0

n−1∑
j=2

|ai |2|bj |2

� 1, (B.14)

i.e.,

∂f

∂x
(0, σ ) � 0. (B.15)

For any separable state σ , which can be expressed by σ = ∑
i pi |ηiξ i〉〈ηiξ i |, then

∂f

∂x
(0, σ ) =

∑
i

pi

∂f

∂x
(0, |ηiξ i〉〈ηiξ i |) � 0, (B.16)

this proves that σ ∗ is the closest separable state of ρ for certain.

Appendix C

Here, we use mathematical induction method to prove the formula of fidelity of two-parameter
class of states in 2 ⊗ n quantum system:

Fn = 2(n − 2)α +
3
√

β(3β + γ )√
6

+

√
γ (3β + γ )√

2
. (C.1)

Proof. When n = 3, it is easy to obtain the fidelity of 2 ⊗ 3 quantum system

F3 = 2α +
3
√

β(3β + γ )√
6

+

√
γ (3β + γ )√

2
, (C.2)

when n = 4, the fidelity of 2 ⊗ 4 quantum system

F4 = 4α +
3
√

β(3β + γ )√
6

+

√
γ (3β + γ )√

2
. (C.3)

Obviously, equation (C.1) is valid for the cases of n = 3, 4.
Now, let us assume equation (C.1) is valid for n = k, i.e.,

Fk = 2 (k − 2) α +
3
√

β(3β + γ )√
6

+

√
γ (3β + γ )√

2
,

then when n = k + 1, by the definition of RGME, we know

Fk+1 = tr
√

ρ
1
2 σ ∗ρ

1
2 , (C.4)

where the matrix expressions of ρ, σ ∗ have been given in (B.6), (B.7).
By calculation, we obtain the fidelity

Fk+1 = tr

(
V 0

0 W

)
, (C.5)
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where matrix V is a (2(k + 1) − 4) × (2(k + 1) − 4) matrix with diagonal element α. W is a
diagonal matrix which can be expressed as

W =



√
β(3β+γ )

6 0 0 0

0
√

β(3β+γ )

6 0 0

0 0
√

β(3β+γ )

6 0

0 0 0
√

γ (3β+γ )

2


, (C.6)

hence

Fk+1 = 2(k − 1)α + 3

√
β(3β + γ )

6
+

√
γ (3β + γ )

2
+ (2(k + 1) − 2k)α

= 2((k + 1) − 2)α + 3

√
β(3β + γ )

6
+

√
γ (3β + γ )

2
. (C.7)

That is, when n = k + 1, equation (C1) is also valid. Hence, the proof is over. �

Appendix D

Here, we prove that the formula of fidelity of maximally entangled mixed states in 2 ⊗ n

quantum system is

F = λ2 + λ3 +
(λ1 + 2λ4)

2

√
λ4

λ1 + λ4
+ λ1

√
λ1 + 2λ4

2(λ1 + λ4)
, (D.1)

which is independent of n.

Proof. When n = 3, 4, it is easy to obtain the fidelity of maximally entangled mixed quantum
states by straightforward matrix calculation:

F = λ2 + λ3 +
(λ1 + 2λ4)

2

√
λ4

λ1 + λ4
+ λ1

√
λ1 + 2λ4

2(λ1 + λ4)
. (D.2)

We must calculate the fidelity for different integer n, above formula is still valid.
It is known that matrix ρ ′ has four eigenvalues λ1, λ2, λ3, λ4. According to equation (66),

it can be expressed as

ρ ′ =


λ4 0 0

0 P1 0

0 0 P2

 , (D.3)

where

P1 =


λ1
2 0 − λ1

2

0 R 0

− λ1
2 0 λ1

2

 , P2 =


0 . . . 0

...
. . .

...

0 . . . λ2

 . (D.4)

P2 is a diagonal (n − 1) ⊗ (n − 1) matrix whose last element of diagonal line is λ2. Like
matrix P2, R is (n − 2) ⊗ (n − 2) matrix, but the last element of diagonal line is λ3.
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While the matrix expression of σ ′ can be written in the form

σ ′ =


(λ1+2λ4)

2

4(λ1+λ4)
0 0

0 Q1 0

0 0 Q2

 , (D.5)

where

Q1 =


λ1(λ1+2λ4)

4(λ1+λ4)
0 − λ1(λ1+2λ4)

4(λ1+λ4)

0 R 0

− λ1(λ1+2λ4)

4(λ1+λ4)
0 λ1(λ1+2λ4)

4(λ1+λ4)

 , Q2 =
(

λ2
1

4(λ1+λ4)
0

0 P ′
2

)
. (D.6)

Similarly to matrix P2, P
′
2 is just (n − 2) ⊗ (n − 2) matrix.

Now ρ ′, σ ′ are all expressed in diagonal form, then we can write

F = tr
√

ρ ′ 1
2 σ ′ρ ′ 1

2 = tr


λ1+2λ4

2

√
λ4

λ1+λ4
0 0

0
√

P
1
2

1 Q1P
1
2

1 0

0 0
√

P
1
2

2 Q2P
1
2

2

 . (D.7)

The fidelity is simplified to

F = (λ1 + 2λ4)

2

√
λ4

λ1 + λ4
+ tr

(√
P

1
2

1 Q1P
1
2

1

)
+ tr

(√
P

1
2

2 Q2P
1
2

2

)
. (D.8)

Here, we use the fact that if a matrix has the form
x 0 0 −x

0 O 0 0

0 0 y 0

−x 0 0 x

 , (D.9)

where O denotes block matrix with all elements 0, then the eigenvalues of the square root of
this matrix are

√
2x,

√
y.

In order to get the matrix trace, we start to calculate the eigenvalues for simplification.

Note matrix P
1
2

1 Q1P
1
2

1 can be expressed in the form (D.10). No matter what the value of

n is, matrix
√

P
1
2

1 Q1P
1
2

1 just has two eigenvalues, i.e. they are λ3, λ1

√
λ1+2λ4

2(λ1+λ4)
. The matrix

P
1
2

2 Q2P
1
2

2 is diagonal matrix with last element λ2
2 in the diagonal line.

Thus, we acquire the fidelity according to equation (D.9):

F = λ2 + λ3 +
(λ1 + 2λ4)

2

√
λ4

λ1 + λ4
+ λ1

√
λ1 + 2λ4

2(λ1 + λ4)
. (D.10)

It is independent of n, that is, when n is an arbitrary integer, equation (D1) is also valid, the
proof is finished. �
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